Cray J. Henry | The multicore challenge

 

Connecting state and local government leaders

Commentary: The makers of multicore processors in PCs could learn a few things from high-performance computing.

Before the beginning of this decade you could have spent millions of dollars in new computer hardware each year and never had to consider buying a multicore computer ' unless you were in the market for a high-end supercomputer. Today dual-core machines are common on many desktops, quad-core machines are moving to market now, and the Sony PS3 gaming console has nearly double that number of computational elements supporting the main processor.During the next several years we'll see processors with ever-larger core counts on the market. Arguably they will be much more powerful. But it raises new questions beyond how best to harness all that computational power. In particular, how can software developers create applications that can use all the cores efficiently to solve your problem faster?This transition is already in motion and, without a disruptive new processing technology, inevitable. The reason for the move is straightforward ' people buying computers today want machines that are better than what they bought yesterday. But as technology advanced the chipmakers had to change how they define 'better.'In the final decades of the 20th century the standard metric was the clock speed of a processor. Processors moved inexorably from 10 MHz up through 1 GHz. But as processor clock cycles moved into the GHz range, chip manufacturers encountered two main problems. First, the processors became so much faster than the rest of the computer that the processors had to (and still have to) wait for the information they need to continue working from slower memory systems. Radical changes in processor architecture were able to hide some of this delay, but carried higher design costs and added complexity for the software designers.The second major problem chip designers encountered in moving past the 1 GHz mark is that faster clock speeds cause disproportionately higher power consumption and heat generation, causing problems for consumers and data centers hosting these machines.Faced with a departure from the standard technology improvement cycle, manufacturers started to blend the ideas of capability and speed, resurrecting an older capability measure called FLOPS (Floating Point Operations Per Second). The advantage of FLOPS is that it can describe 'improving' computer performance while clock speeds stagnate or even decline. As manufacturers are able to create smaller and smaller features, space is made available on processor chips that can be used to host additional cores that can do more floating-point operations in a single clock cycle, and today's computers can once again be marketed as 'better' than yesterday's.The problem, of course, is the software. How can software developers create applications that can use all of the cores efficiently on behalf of the user?When the clock speeds were going up, the same old programs ran faster, usually with no effort on the part of the software developer. But as cores are added to processors at the same clock speed, software has to be adjusted to take advantage of the new capability. The challenge of writing parallel software has been the key issue for the computational science and supercomputing community for the last 20 years. There is no easy answer; creating parallel software applications is difficult and time consuming.In the supercomputing community we have many applications that can effectively use dozens to thousands of cores, but these applications represent only a tiny fraction of the applications in use around the world today. The real value of multicore machines will not be realized until mainstream software development techniques and practices evolve to encompass the art of parallel programming. The emergence of multicore computers brings this challenge to the forefront.This is an area in which high-performance supercomputing has an advantage of several decades over the mainstream computing community.The main challenge in parallelization is dividing a task over all the cores such that they are all working collectively at the same time on your problem. Most applications in use today follow very sequential logical approaches designed to run on one core; multicore developers have to be trained to think of parallel approaches. They are now faced with issues such as how to keep data synchronized as results are computed, shared and used as input to follow-on calculations across tens to thousands of cores. With each core potentially running independently, this is a hard problem especially if you don't want to waste compute cycles on individual cores waiting for the slowest calculation to catch up.In HPC, there are two main trends supporting the development of parallel software ' the use of special language extensions that support explicit control of communications among individual compute cores (e.g. Message Passing Interface and Open MP) and the specialized parallel languages (e.g. Co-array Fortran and Parallel Unified C) that support both explicit communications and parallel logic constructs.MPI has become the dominant approach in high-performance technical computing (HPTC) primarily because it is portable across multiple platforms and has a long legacy of support by the vendors. Developers of scientific applications in HPC can expect that successful products will be in use for 20 to 40 years, so they value portability.But it's not clear that MPI can continue to dominate even in scientific software. Creating an MPI application necessitates very low-level understanding of data and process coordination. This requires significant recoding efforts for existing applications, and the level of detail that has to be managed by the programmer can make getting a verifiably correct software application that scales to tens of thousands of processors (or cores) a very expensive and time-consuming process.Parallel languages have picked up momentum over the last several years because they offer a path to faster and more straightforward software development but, while their portability is growing, they are not yet as portable or 'future proofed' as MPI.As the computing community struggles with this latest transition, we're finally at a point where HPC and commodity computing have more than shared chips in common. The trick will be working together to take the best of what we know works on a large scale, avoid trying the techniques we already know don't work, and get a solution faster that benefits us all.

Cray J. Henry











The return of the FLOPS






The convergence of supercomputing and commodity computing

















Cray J. Henry is director of the Defense Department's High Performance Computing Modernization Program, E-mail him at cray@hpcmo.hpc.mil. An abridged version of his comments appeared in the Sept. 24, 2007, issue of GCN.
X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.