For chips, the next step is a great leap

 

Connecting state and local government leaders

NIST explores the next dimension for chips.

As technologies go, CMOS is a tough act to follow. The complementary metal-oxide semiconductor, first used in digital watches almost 40 years ago, is the most widely used integrated circuit in information technology products and has enabled the rapid development of everything from modern PCs to increasingly powerful cell phones and other handheld devices.'The reason CMOS has been valuable to us is because we have been able to improve it every year,' putting more and faster circuits and transistors into each square inch of chip, said Jeff Welser, director of the Semiconductor Research Corp.'s Nanoelectronics Research Initiative.This progress in processor performance has allowed industry to follow Moore's Law so far. Postulated by Intel cofounder and engineer Gordon Moore in 1965, Moore's Law states that, because of steady improvements in chip fabrication, the number of transistors on a chip will double roughly every 18 months, with computer processing power increasing correspondingly. This observation has held remarkably true across the decades.But nothing lasts forever.'We've always been worried about the physical limits of how small CMOS can get,' Welser said.SRC, an industry consortium created to fund university research into semiconductors, established the Focus Center Research Program in the 1990s to support research to advance CMOS semiconductors.In 2004, with the end of the CMOS road coming into view, SRC established the Nanoelectronics Research Initiative (NRI) to develop a new generation of technology to replace CMOS by 2020.'Getting something by 2020 is a challenge, but reasonably attainable,' Welser said. 'We think we probably have another good decade for advancing CMOS' through scaling techniques such as multicore processors before a replacement technology will be needed.SRC's NRI recently acquired a partner in its quest, one with deep pockets and broad expertise in nanotechnology research.The National Institute of Standards and Technology announced in September that it would provide $2.76 million in research grants to NRI projects this year, the first step in a projected five-year program to provide more than $18 million in semiconductor research funding. NIST scientists also will be collaborating with industry and university researchers.This is the kind of long-term basic research that NIST wants to be involved in, said David Seiler, chief of NIST's semiconductor electronics division.'They are coming up against the limits of what can be done with current semiconductors, so that there are serious concerns about what happens 10 or 15 years from now,' Seiler said. If the IT industry cannot sustain current progress, there could be serious repercussions on the industry and U.S. economy as a whole, he said.'The entire semiconductor industry has highlighted the problem as one that needs to be solved,' said Jason Boehm, senior analyst at the NIST program office.Joaquin Martinez, senior scientist at NIST's Office of Microelectronics Programs, said now is the right time for NIST to get involved.The program is at a precompetitive stage, when the basic research needed is too expensive for any one company or university to undertake by itself. This gives NIST a chance to advance the state of the entire industry.Welser called NIST's participation in the program absolutely crucial. The research requires the long-term vision and funding available from a government program, and turning a theory into a commercial product requires expertise in extremely refined testing and measurement. 'This is very much what NIST is good at,' he said.'NIST is all about measurement,' Seiler said.CMOS semiconductors enable information processing and calculations by shepherding electrons along circuits and through gates or switches. The complementary part of CMOS refers to the fact that a CMOS chip has an equal number of transistors that switch from positive and negative charges. Switches can be either on or off, which allows digital processing of ones and zeroes. The smaller and more compact the circuits and switches can be made, the more powerful the processors are.One advantage of CMOS technology has always been its low static power drain; that is, the processor uses power only when switching between off and on, reducing both power consumption and the amount of heat generated.But as the circuits approach the molecular and atomic scale, they are reaching the limits of miniaturization and power advantages are beginning to disappear too. The current leaking from the switches when not in use almost equals that needed to operate the switches, a situation Welser likened to a car that uses as much gas when parked as when running. Additional heat accompanies the wasted power.'We are reaching the limits of air cooling,' Welser said. Other techniques, such as water cooling, can work for large pieces of equipment but are not feasible in the small devices such as laptop and handheld computers that CMOS has enabled. 'So we need to find a new way to extend scaling. We need to find something that is better than CMOS.'This is not the government's first involvement in processor development.The Defense Advanced Research Projects Agency is the largest single financial supporter of SRC's Focus Center Research Program, which is advancing CMOS technology.And NIST has a long history of working with the semiconductor industry to develop testing and measurement techniques.Understanding a technology and being able to reproduce it commercially requires the ability to measure accurately, Martinez said.Although a goal and a deadline for the program are in place, nobody knows yet what they are looking for. 'This is a long-term, basic research goal,' Boehm said. 'We are starting from scratch, at least in the realm of nanoelectronics.'That is not to say there are no ideas on how to approach the problem.'There are some good leads,' Martinez said, such as carbon nanotubes.'But nobody knows how to use them to make good transistors consistently.'One of the first questions to be worked out is how to represent the ones and zeroes used in digital processing.CMOS processors use on and off switches for this. Researchers are considering ideas such as electron spin and molecular conformational technology, in which atoms are moved in key positions within a molecule to produce different shapes or behaviors.There still is a lot of work to be done in selecting a method and coupling it with a technology to produce a product, but the 2020 goal is not unreasonable if money and resources are devoted to the project, Seiler said.'People are very creative,' he said.'Breakthroughs do happen. Putting the best minds on it will allow us to come up with breakthroughs.'With the time left before foreseeable improvements in CMOS are exhausted, 'the timing is good,' Seiler said. 'We can be there, hopefully, in 10 years.'Moving a technology of this complexity from prototype to production typically takes about 10 years, Welser said. NRI hopes to cull some of the theories now being proposed and develop some feasible ideas to work on by 2010.To accomplish this, NRI in 2006 established three virtual regional research centers made up of groups of cooperating universities. The Western Institute of Nanoelectronics is based in California, the Institute for Nanoelectronic Discovery and Exploration is in New York, and the Southwest Academy for Nanoelectronics is in Texas. NRI has just completed its first annual review of work at these centers.'I'm surprised at how well we've done' in the first year, he said. There has been good progress in understanding electron spin, but the greatest advance has been getting physicists and chemists to move from theory and experimental science to talking about practical requirements.'Our biggest challenge has been bridging the communications gap' between scientists and engineers, Welser said. Theories are essential to practice, but schemes that work at a few degrees above absolute zero are a long way from being useful to engineers who have to come up with a process to manufacture products. Fortunately, the scientists see the hurdle as an interesting challenge and are coming up with ideas, he said.Although NIST intends to spend $18.5 million during the next five years, the money for the next four years of grants has not yet been appropriated. It also has not yet been determined how the initial $2.76 million will be spent, whether it will go to a few big projects or a lot of smaller ones. But the first round of money should be available quickly. A call for proposals is expected to be released this fall, and NIST will assist NRI in evaluating the proposals.The grants should be in the hands of the researchers by spring.XXXSPLITXXX-NANOTECHNOLOGY, which involves creating and using tools measured in billionths of a meter, holds great promise for applications such as medicine and quantum computing, but producing the devices in usable quantities in reasonable time remains a challenge.Researchers at the University of Maryland's A. James Clark School of Engineering are working to enlist nature's help to produce nanocircuits economically.'While we understand how to make working nanoscale devices, making things out of a countable number of atoms takes a long time,' said Ray Phaneuf, associate professor of materials science and engineering. 'Industry needs to be able to mass-produce them on a practical time scale.'That's where nature comes in. 'Nature is very good at making many copies of an object' through self-assembly, Phaneuf said. But nature knows how to make only a limited range of patterns for these complex structures, such as shells or crystals. Phaneuf's work focuses on the use of templates to teach nature some new tricks.'The idea of using templates is not new,' Phaneuf said. 'What is new is the idea of trying to convince nature, based on the topography of the template, that it should assemble objects in a particular place,' atom by atom.One application for the process could be quantum computing. A host of schemes propose harnessing the quantum states of atomic particles to do complex calculations. One involves assembling pairs of quantum dots ' tiny semiconductors containing from one to 100 particles with elementary electric charges ' to create the qubits used in quantum calculations.Assembling the billions of dots in the precise patterns needed for massively parallel computing may be possible, but, Phaneuf said, 'it may not be doable within the age of the universe' with current techniques.'Nature already knows how to assemble quantum dots,' he said. 'We are working on the step before self-assembly, the self-organization of the substrate,' which will act as the template for the dots.The silicon substrate is etched into steps using lithography, but it is difficult to reach the level of precision required at the atomic scale using lithography alone. Heat and cold can be used to add or subtract atoms on the surfaces and precisely shape the step patterns. The steps can also be shaped. The step patterns, which are stiff, tend to straighten out under heat but are limited by the surrounding patterns in how much they can straighten.'We play this stiffness off with the repulsive interaction between steps' to create the sizes and shapes needed, Phaneuf said.The result is a substrate that can be reused many times as a template for growing nanostructures with silicon and gallium arsenide for computer and cell phone components.'It still is in the development stages,' he said.'There is still quite a lot to do before we make practical devices out of it. I don't think we're quite ready to make transistors on the chips.'And the market for the end products has not yet developed. You are not likely to find any deals on quantum computers from Dell or HP in the ads of your Sunday supplements this weekend. More-immediate applications for this technology are likely to be biochips used in biology and medicine.

IN MANY WAYS, information technology looks to be on the cusp of a new era. Microprocessors and operating systems ' the traditional heart and soul of computing ' are nearing new forks in the road as chip-makers move toward nanoscale production and Internet applications spur renewed debate over fat vs. thin clients. In this look forward, GCN also checks in with experts on other burgeoning issues: nanotechnology in general, the demand for wireless spectrum, social networking as an organizational tool, uses for the Semantic Web and what to do about archiving.



































Positive and negative
















































Researchers turn to nature for help in constructing nanoscale circuits




























NEXT STORY: Natural order

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.