How to prepare for post-quantum cryptography

 

Connecting state and local government leaders

Data that is being encrypted and stored today will certainly be at risk as large-scale quantum computers enter the market before that data reaches the end of its valuable life.

The long-term security benefits of quantum computing have been highly touted. When commercially available, quantum computers will be able to support entirely new models of encryption. That type of quantum-based encryption would be virtually impossible to hack with today’s technologies.

The other side of that coin is a bit more frightening. Quantum computers will have the potential to crack current encryption algorithms, posing considerable risk to existing public key cryptography.

Lest we think the problem is far enough away to allow for a relatively relaxed period of strategizing, quantum computers are quickly transitioning from a futuristic goal to today’s reality. Earlier this year, IBM launched the first commercially available quantum computer, the 20-qubit IBM Q System One, with a goal of doubling quantum computing speeds every year.  The goal is to reach, within three to five years, “quantum supremacy” --  the point at which quantum computers overtake the problem-solving speed of today’s best traditional processors.

While there’s no need to start panicking, neither should government agencies play wait-and-see with their security as quantum computing gains ground.

NIST’s cryptography initiative: Why encryption models need to change

For a bit of background on some of the vocabulary above, quantum computing is not based on the traditional mathematical principles that govern classical computing. It is based on the science of quantum mechanics, where computations are driven by quantum bits, or qubits, rather than the simple binary digits of conventional computing.

Whereas the math used with binary bits produces discrete, fixed values, qubits can exist in multiple states at the same time. This is why quantum computing is so revolutionary: Qubits do not have a fixed value, instead existing in an indeterminate state. With so much fluidity, they can handle far greater complexity than the binary model.

Recognizing the threat that such computational power can have on security, the National Institute of Standards and Technology has been working to identify and standardize new quantum-resistant cryptographic algorithms.

This past January, NIST announced a narrowed-down list of 26 algorithms for potential standardization, with plans to evaluate and analyze these algorithms in real-world settings over the remainder of the year. These quantum-resistant algorithms will need to work on systems of all sizes -- from large computers to smart phones to small internet-of-things devices. 

When considering cryptographic algorithms, it’s important to keep in mind that current encryption relies mainly on two methods: asymmetric, such as RSA, and symmetric, such as AES. Encryption solutions often combine these methods, leveraging the strengths of both models for a faster, more secure overall approach.

In terms of data security, encryption models like RSA take a common approach based on mathematical principles -- specifically around factoring integers into prime numbers. The larger the prime numbers, the longer the encryption keys become, and the more difficult it becomes to break the code. This model can, in theory, keep scaling with larger prime numbers, but its usefulness is constrained by the computational limitations of classical computers.

Because quantum-resistant algorithms are rooted in quantum mechanics and developed with computational capabilities much greater than the factoring-based models built on mathematical principles, just continuing to build bigger encryption keys is not enough to safeguard data. The very basis of our approach to encryption must change.

Quantum-proofing your data and the need for crypto agility

With all of this in mind, there are some fundamental factors for IT teams to consider when assessing risk to data.

IT teams must determine how many years they need to keep their encrypted data. Assuming data must remain secure for years or even decades to come, there will be a race against the clock to make sure agency IT infrastructure is “quantum-safe” before large-scale quantum computers become readily available. The shorter agency leadership believes that quantum timeline to be, the greater the urgency for taking action.

Protecting data will involve implementing NIST-approved quantum-resistant algorithms on existing classical computers and reencrypting all agency data with those algorithms. Aside from the complexity of the technology, setting the standards for quantum-resistant algorithms is still in the early stages. Sticking to NIST-approved algorithms, therefore, is the best bet.

When procuring and deploying new technologies that utilize encryption, agencies must ensure these solutions are “crypto agile” (dependent on their shelf-life, of course). Crypto agility is the ability for technology to adopt another encryption method without changing the infrastructure. These agile solutions use traditional encryption methods today, but they can be easily modified to use quantum-resistant algorithms as they become available.

To be clear, the sky is not falling -- yet. The threat of quantum computing to network security is not immediate, because quantum algorithms cannot be efficiently deployed on classical computers. However, data that is being encrypted and stored today will certainly be at risk as large-scale quantum computers enter the market before that data reaches the end of its valuable life.

Taking preventive action today, before quantum computers are routinely commercially available, will prevent agencies from putting mission-critical data at risk.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.