Quantum leap: Company claims breakthrough, though skeptics remain

 

Connecting state and local government leaders

Could a small Canadian start-up usher us into the age of quantum computing?

Quantum computing has long held the promise of harnessing processing power orders of magnitude greater than what's possible with today's most powerful digital computers, but researchers have always considered that goal decades away.'There is no reason it can't be done, but nobody sees a clear path to it,' said Carl J. Williams, coordinator of the Quantum Information Program at the National Institute of Standards and Technology.Now, a Vancouver, B.C., start-up says it has found the path and is introducing what it calls the first quantum computer designed to run commercial applications.D-Wave Systems Inc. was scheduled to unveil the 16-qubit system on Feb. 13 at the Computer History Museum in Mountain View, Calif.'The initial model is not really fast, but it's a demonstration of the technology,' said CEO Herb Martin. 'We expect to have many more qubits by the end of 2007,' when the company plans to begin offering its platform to outside users as an online service. He said the company expects to begin selling the computers themselves by late 2008.A qubit is the basic unit of information in quantum computing, processing and holding data. The more qubits, the more processing power.Other researchers have been reluctant to comment directly on the D-Wave system before actually seeing it in action, but it is difficult for them to avoid some skepticism.'If it is true, it is remarkable,' Williams said.NIST has been a major player in quantum information research since the early 1990s. Commercial R&D centers, including IBM Corp.'s Watson Research Lab, also are pursuing the technology.'Our research guys consider it a big thing for the future,' said Watson Lab staff member David DiVincenzo. 'It's pretty far from commercial reality at this point.'How far from commercial reality? No one can say for sure, but researchers commonly throw out numbers such as 20 to 25 years. There is no reason a quantum computer can't be made, they say, but it is a massively complex engineering problem.That was the attitude that let D-Wave steal a march on commercial development, Martin said.'The general feeling was [that] it was going to take 20 years to do this,' he said. So no companies were putting big money into the effort. 'Most of the work is being done in universities or in labs that are government funded.'D-Wave, which grew out of work done at the University of British Columbia, took a simplified approach. It uses a traditional digital computer to run applications and submit problems, and a quantum processor for acceleration.'You could say we took a hybrid approach rather than a pure quantum approach,' Martin said.The system uses an array of magnetic flux qubits, which are micron-sized loop circuits etched into superconducting niobium. Current can flow clockwise or counterclockwise on the loop, the two states representing a 1 or a 0, much like a bit in a traditional computer. The difference with the qubit is that because of the peculiarities of quantum mechanics, each qubit can represent both states at the same time under the right circumstances.This increases the processing power exponentially. Even the most massively parallel digital computer has to perform each operation sequentially. A quantum computer can do truly parallel processing.The superconducting flux qubit technology used by D-Wave is one of three promising approaches to quantum computing often put on the table by researchers, Williams said. Research at NIST has taken a different direction.'The state of the art really is in ion traps,' he said.The difficulty in making any system work is controlling the gateways between qubits so that you get accurate results. This is the work done by transistors and integrated circuits in digital technology. The state of a qubit is so delicate that errors tend to creep in, and these multiply as the number of qubits used increases.If you can't control the noise from errors, you can't scale, Williams said. 'If you can't scale, you're dead in the water.'The ion trap technology being investigated by NIST has been pushed close to 99 percent accuracy, Williams said. This is not good enough for practical computing, but is better than what has been accomplished by researchers working with superconducting flux qubits. 'None of them have been able to push the things past about 90 percent,' he said.Some limited uses for quantum computations might be easier to achieve. Both the Air Force Office of Strategic Research and the Defense Advanced Research Projects Agency are pursuing quantum simulators.'With 100 qubits, I could simulate something you could not possibly compute,' even with a relatively high error rate, Williams said. If the process fails, you can repeat it until you get a good answer. Even these machines are a decade away from practical applications, he said.D-Wave claims its processor, called a thermally assisted adiabatic quantum computer, can perform adequately even in the presence of error-induced noise. It uses programmable gateways that can be tuned to favor certain relationships between qubit states.'The D-Wave processor's natural physical evolution drives it into the solution of this difficult problem, similarly to the way a ball rolling down a hill is driven into the lowest point,' explains a paper prepared by the company. 'If the physical system made up of the various devices on the D-Wave processor can reach its minimum energy state, then simply reading out the states of the memory elements provides the exact solution to the problem.'D-Wave's is not the first quantum computer built. Demonstrations have been made with smaller models. The difference is that D-Wave has a working application to run on its computer, one designed to do highly constrained database searches that are impractical on a traditional computer.The company plans to drive the market for its computer by giving developers free access to it so they can write their own programs and conduct research.Because the programs actually run on a digital computer and feed data to the quantum processor, it is not difficult to port an application to the new computer, Martin said.The computer as it now stands fills about 7 feet of a standard 19-inch rack and will always be a server room machine, Martin said.'We might shrink it down to 5 feet, but it's not going to be much smaller than that,' he said. 'It's not going to be a desktop machine.'One thing Martin and other researchers agree on is that there will always be a market for digital computers.'Quantum computers are probably not a replacement ever for digital computers,' said IBM's DiVincenzo. 'It won't be a replacement for a desktop or a laptop, and it doesn't improve anything that you do on a traditional computer.'

ZERO SUM: Refrigeration keeps the D-Wave quantum computer's circutry near absolute zero temperatures.

D-Wave Systems Inc. photo











Mechanics Illustrated
















"You could say we took a hybrid approach rather than a pure quantum approach." Herb Martin, D-Wave
























D-Wave's offering

















X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.