DOD wants apps up to speed

 

Connecting state and local government leaders

Despite hardware advances, complex code and heavy traffic put a drag on systems.

Despite hardware advances, complex code and heavy traffic put a drag on systems Bloated operating systems and applications are preventing military organizations from getting sufficient speed from their information technology systems, according to several speakers at a recent Navy IT Day in Washington.

'We have achieved the promises of Moore's Law,' the decades-old axiom that processing power would roughly double every 18 to 24 months, said Chris Miller, the Navy's domain lead for command, control, communications, computers and intelligence (C4I).

'Much more pervasive now is the problem with software.'

'Software is getting bigger and more complex,' Miller said. 'The Windows Vista operating system is so much bigger than its predecessors, [but] it is not any faster, even though processing speeds have increased.'

Elizabeth Sedlacek, director of information systems and infrastructure at the Marine Corps Systems Command, echoed Miller's complaint. 'Windows 95 required 50M of hard drive space,' she said. 'Vista requires 15G.'

Part of the problem is that Moore's Law isn't the only one in the IT universe.

Sedlacek said increased resource requirements from the multiplication of software code illustrate an adaptation of Parkinson's Law: software will expand to fill the resources available to it. The original Parkinson's Law states that work would expand to fill the time available. A corollary to Parkinson's Law states that software eventually reaches a coefficient of inefficiency, meaning that it gets so large that it no longer processes data effectively.

Sedlacek summarized her conundrum by citing yet another law. 'Wirth's Law states that software gets faster slower than hardware gets faster,' she said. According to Wirth's law, then, software will always lag behind processing capacity.

But it wasn't always so. 'In the 1970s and 1980s, hardware processing power was wanting, and programmers had to code effectively and efficiently in order to get done what we needed to get done,' Sedlacek said. 'Now that capacity has increased and the software industry is much larger, developers want to put lots of features on software and to do it quickly in order to gain a competitive advantage. Efficiency of coding is no longer a priority.'

A problem the Marines face, for example, is that they rarely operate in a resource-rich environment.

Marines are on expedition-like missions when they deploy, Sedlacek said, and they typically operate with a minimal footprint in areas of limited bandwidth. They rely on small handheld devices for information and communications.

She challenged industry to help solve the problem.

Aside from software coding, agencies could address the problem through more efficient data management.

Miller suggested that the Navy needs a data strategy for how it expands applications. Richard Hull, chief scientist at Modus Operandi, agreed in an interview with GCN that getting smarter about collecting and processing data will help software work more efficiently.

'Software gets slower because the data operating over a network is increasing faster than computer processing rates,' Hull said.

Some satellites generate several gigabytes of data per second, Hull said. 'The next generation may be terabytes of information per second,' he said. 'If a computer has to deal with 100 times or 1,000 times the amount of data today than it did yesterday, it's going to be swamped.'

Hull suggested two strategies to cope with the glut of data. One involves prioritizing so that only the data most relevant to the mission is actually processed.

'A weather information system may have collected temperature once per hour, yielding 24 readings per day,' he said. 'Then a new technology comes along allowing you to collect a new temperature reading every second. That's 600 times more information than you had before.

But that doesn't mean you need to analyze it all in depth. You're really just interested in changes or anomalies.'

Using semantic architectures to analyze and filter data sets up hierarchies of data and processing that can help ensure that only the most interesting data climbs the ladder for in-depth analysis. 'You might have a network of 64 computers filtering the data and passing up relevant data to a level consisting of 16 computers and then to eight computers,' Hull said. 'This can filter out a lot of junk and provides a higher degree of fidelity in information collecting and analysis.'

Another possible solution is to use cloud computing schemes, he said. Cloud computing refers to the ability to construct ad hoc networks of computers that can share resources to tackle tough computing challenges.

An organization might have 10,000 computers at its disposal. Cloud computing provides a management structure by which, for example, 1,000 of those machines might be aggregated to solve a particular problem.

'It could take a year to build a network of

1,000 computers,' Hull said, 'but the cloud computing architecture allows this to be done quickly.'

Another potential solution comes in the form of muticore processing, essentially assigning pieces of the puzzle to different processors running simultaneously on a single device. There are limitations to this approach, as there are with cloud computing, because most applications are single-threaded, Sedlacek said. Muticore central processing units do not increase computing power when the applications can't be divvied up into discrete tasks.

The premise of multicore computing is that the computing capacity of microchips is leveling off and that the computing power inherent in existing machines must be maximized and optimized. Making that happen requires programmers to accomplish two things, said Joey Sevin, Navy programs manager at Mercury Federal Systems. They must develop a greater understanding of computer hardware, and they must do something about how they write software.

'It requires people to think differently about applications and how to write them,' Sevin said.

'Programmers are encouraged to throw off code quickly, but in the end this is very inefficient when the application is single-threaded.'

Sevin said the solution is to use middleware that can coordinate messaging among multiple processors. 'What needs to happen is the adoption of a standard' for a message passing interface, he said.

MPIs would allow existing computers to distribute tasks across their existing processors and boost their processing power. The effect of distributing computing assignments across multiple processors also has the effect of making the software less complex, Sevin said.

Mercury is working on developing multiprocessor solutions for processing sensor data.

Because data collection platforms are getting smaller and more complex, Mercury wants to pool processing power to support multiple missions.

'The idea is to create an environment adaptive to different situations,' Sevin said. An unmanned aerial vehicle 'may go out on a mission.

When it finishes its job and transmits its data, the computing asset may be reallocated to some other mission in another location and with a different type of sensor.'

This type of system is designed to handle two problems inherent in the collection and transmission of sensor data: latency and throughput.

Latency refers to the need for computing to function in real time. Throughput problems arise when the volume of data overwhelms processors and causes delays.

What sort of solution would the Marine Corps be most interested in? Sedlacek leaned toward simpler and leaner software. She urged industry to adopt open, modular and scalable software designs and to avoid 'featuritis.' She also suggested that the Marine Corps might develop incentives for lean software design, and she urged software developers to adopt the YAGNI principle: You Ain't Gonna Need It, so don't code it.

NEXT STORY: The return of Ada

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.