Can machine learning predict the next big disaster?

FrankRamspott/Getty Images

 

Connecting state and local government leaders

Combining statistical algorithms with machine learning allows for accurate extreme weather predictions without the need for massive amounts of historical data, a new study found.

A new study shows how machine learning could predict rare disastrous events, like earthquakes or pandemics.

The research suggests how scientists can circumvent the need for massive data sets to forecast extreme events with the combination of an advanced machine learning system and sequential sampling techniques.

When it comes to predicting disasters brought on by extreme events (think earthquakes, pandemics, or “rogue waves” that could destroy coastal structures), computational modeling faces an almost insurmountable challenge: Statistically speaking, these events are so rare that there’s just not enough data on them to use predictive models to accurately forecast when they’ll happen next.

But the new research indicates it doesn’t have to be that way.

In the study in Nature Computational Science, the researchers describe how they combined statistical algorithms—which need less data to make accurate, efficient predictions—with a powerful machine learning technique and trained it to predict scenarios, probabilities, and sometimes even the timeline of rare events despite the lack of historical record on them.

Doing so, the researchers found that this new framework can provide a way to circumvent the need for massive amounts of data that are traditionally needed for these kinds of computations, instead essentially boiling down the grand challenge of predicting rare events to a matter of quality over quantity.

“You have to realize that these are stochastic events,” says study author George Karniadakis, a professor of applied mathematics and engineering at Brown University. “An outburst of pandemic like COVID-19, environmental disaster in the Gulf of Mexico, an earthquake, huge wildfires in California, a 30-meter wave that capsizes a ship—these are rare events and because they are rare, we don’t have a lot of historical data.

“We don’t have enough samples from the past to predict them further into the future. The question that we tackle in the paper is: What is the best possible data that we can use to minimize the number of data points we need?”

The researchers found the answer in a sequential sampling technique called active learning. These types of statistical algorithms are not only able to analyze data input into them, but more importantly, they can learn from the information to label new relevant data points that are equally or even more important to the outcome that’s being calculated. At the most basic level, they allow more to be done with less.

That’s critical to the machine learning model the researchers used in the study. Called DeepOnet, the model is a type of artificial neural network, which uses interconnected nodes in successive layers that roughly mimic the connections made by neurons in the human brain.

DeepOnet is known as a deep neural operator. It’s more advanced and powerful than typical artificial neural networks because it’s actually two neural networks in one, processing data in two parallel networks. This allows it to analyze giant sets of data and scenarios at breakneck speed to spit out equally massive sets of probabilities once it learns what it’s looking for.

The bottleneck with this powerful tool, especially as it relates to rare events, is that deep neural operators need tons of data to be trained to make calculations that are effective and accurate.

In the paper, the research team shows that combined with active learning techniques, the DeepOnet model can get trained on what parameters or precursors to look for that lead up to the disastrous event someone is analyzing, even when there are not many data points.

“The thrust is not to take every possible data and put it into the system, but to proactively look for events that will signify the rare events,” Karniadakis says. “We may not have many examples of the real event, but we may have those precursors. Through mathematics, we identify them, which together with real events will help us to train this data-hungry operator.”

In the paper, the researchers apply the approach to pinpointing parameters and different ranges of probabilities for dangerous spikes during a pandemic, finding and predicting rogue waves, and estimating when a ship will crack in half due to stress. For example, with rogue waves—ones that are greater than twice the size of surrounding waves—the researchers found they could discover and quantify when rogue waves will form by looking at probable wave conditions that nonlinearly interact over time, leading to waves sometimes three times their original size.

The researchers found their new method outperformed more traditional modeling efforts, and they believe it presents a framework that can efficiently discover and predict all kinds of rare events.

In the paper, the research team outlines how scientists should design future experiments so that they can minimize costs and increase the forecasting accuracy. Karniadakis, for example, is already working with environmental scientists to use the novel method to forecast climate events, such as hurricanes.

Ethan Pickering and Themistoklis Sapsis from the Massachusetts Institute of Technology led the study. Karniadakis and other Brown researchers introduced DeepOnet in 2019. They are currently seeking a patent for the technology.

Support for the study came from the Defense Advanced Research Projects Agency, the Air Force Research Laboratory, and the Office of Naval Research.

Source: Juan Siliezar for Brown University

This article was originally published in Futurity. It has been republished under the Attribution 4.0 International license.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.