DARPA digs into the details of practical quantum computing
Connecting state and local government leaders
To speed the technology's development, the Defense Advanced Research Projects Agency is asking for help solving practical and architectural problems.
Quantum computing promises enough computational power to solve problems far beyond the capabilities of the fastest digital computers, so the Defense Advanced Research Projects Agency is laying the groundwork for applying the technology to real-world problems.
In a request for information, DARPA is asking how quantum computing can enable new capabilities when it comes to solving science and technology problems, such as understanding complex physical systems, optimizing artificial intelligence and machine learning and enhancing distributed sensing.
Noting that it is not interested in solving cryptology issues, DARPA is asking the research community to help solve challenges of scale, environmental interactions, connectivity and memory and suggest “hard” science and technology problems the technology could be leveraged to solve.
Four practical and architectural challenges are outlined:
Establishing the fundamental limits of quantum computing in terms of how problems should be framed, when a model's scale requires a quantum-based solution, how to manage connectivity and errors, the size of potential speed gains and the ability to break large problems into smaller pieces that can map to several quantum platforms.
Improving machine learning by leveraging a hybrid quantum/classical computing approach to decrease the time required to train machine learning models. Questions to be answered include what might be the tasks that deliver the best results, how speed gains are affected by the size of the quantum machine and whether any new technology needs to be developed to interface quantum and classical resources.
Interfacing quantum computing resources with quantum sensors that accurately measure changes in gravity, magnetic fields or acceleration and determining the optimal size, platform, performance and relative location of both the quantum computing system and the sensors.
Applying quantum-computing-inspired algorithms and processes to classical computers by identifying recurring themes and structures that can help improve classical architecture.
DARPA will use RFI responses to identify participants and speakers for a potential workshop on quantum applications with state of the art capabilities.
Read the full RFI here.
NEXT STORY: Chicago’s Parking Garages Are Ready for AVs