Laser-linked satellites could deliver ‘internet from space’

 

Connecting state and local government leaders

The low Earth orbit satellites would provide internet access to remote regions that currently have no or very limited access to the internet.

Satellites do not yet play a major role in the world’s internet infrastructure. However, this may soon be set to change.

Within the next decade, a new generation of satellites could lay the foundations for an “internet from space,” says Ankit Singla, professor at ETH Zurich’s Network Design & Architecture Lab. His team is investigating how to improve the performance of large-scale computer networks, including the internet.

Exploiting advances in cost-cutting technologies in the space sector, the new satellite systems would use thousands of satellites instead of the tens of satellites used in past systems. Laser light could then link these satellites to each other to form a network.

The coverage these satellites would provide could reach remote regions that currently have no or very limited access to the internet. These regions are either entirely unconnected or poorly connected to the intercontinental fiber-optic cables that power today’s internet.

The ‘internet from space’ race

The capabilities of the low Earth orbit (LEO) satellites have triggered a new, contested “space race,” with heavyweights such as Elon Musk’s SpaceX and Jeff Bezos’ Amazon throwing their hats into the ring. These companies are developing large-scale satellite constellations with thousands to tens of thousands of satellites. These would orbit the Earth at speeds of 27,000 km/hour (16,777 mph) at a height of around 500 kmh (around 311 mph). Traditional geostationary satellites orbit at around 35,768 kmh (22,225 mph).

SpaceX, for example, has already launched its first 120 satellites, and is planning to offer a satellite-based broadband internet service in 2020. In addition to global coverage, the technology used in the “internet from space” promises high data transfer rates without major delays in data transmission. The latency, as computer scientists call these delays, is significantly lower than that of geostationary satellites, and even that of underground fiber-optic lines for long-distance communication.

“If these plans succeed, it would be a huge leap forward in the world’s internet infrastructure,” says Debopam Bhattacherjee, a doctoral candidate working with Singla to investigate the optimal design of networks for satellite-based broadband internet in order to guarantee a high-bandwidth, delay-free data flow.

Delivering the internet with satellites

The new research challenges arising from the “internet from space” compared to the “internet at ground level” are due to the fact that the satellites are in motion. The satellites represent nodes through which the data travels. As the satellite-based nodes constantly change their position in relation to one another, they form a highly dynamic network.

In contrast, the transit nodes belonging to the “internet at ground level” do not change their location or position. As a result, the largely static infrastructure of the “internet at ground level” does not address the same requirements as those for the “internet from space.”

 “To implement satellite-based broadband internet, we have to rethink virtually all aspects of the way in which the internet is currently designed to function,” says Singla.

He explains that as the satellites fly very fast and in dense swarms, more efficient approaches to network design are required for the satellite internet. Even the design concepts used for mobile networks on high-speed trains, drones, and aircraft cannot be transferred easily to satellites.

Bhattacherjee and Singla have now developed a mathematical model that demonstrates how one might fundamentally improve the network design in space. They have tested their design approach using the example of SpaceX and Amazon, but it can be applied independently of the technology of a particular company.

Connecting the network

The design concept the researchers devised is based entirely on the high temporal dynamics of the LEO satellites. The key question they first asked was: how can scientists link thousands of satellites together to achieve the best possible network performance? The answer is not easy, as each satellite can have no more than four connections to other satellites.

Intuitively, one might think that the satellites always connect only to the nearest satellites. According to Bhattacherjee, however, this assumption is too restrictive. The satellites could well connect to satellites that are more distant. To maximize data transfer efficiency, it would actually be more efficient if the data used longer connections but crossed fewer nodes (satellites). After all, the act of data crossing through a node also consumes resources, thus reducing resources available for other connections.

However, reducing the number of on-path nodes in order to increase efficiency must not compromise the length of the end-to-end path. Otherwise, this will deteriorate latency. Further, it is important that inter-satellite connections do not change too often, as establishing new connections can take tens of seconds during which data cannot be exchanged.

The idea behind the researchers’ approach is that the connections between the satellites would be built based on specialized, repetitive patterns. The most suitable pattern depends on the satellite constellation’s geometry and the network’s input traffic. A key point is that the connection pattern repeats on every satellite in the network, with all satellites connected in exactly the same way, and with the connections remaining stable over time.

In the case of SpaceX, the new design concept increases network efficiency by 54% in comparison with the current approach; for Kuiper (Amazon), the efficiency increase is 45%.

“Our approach could double the efficiency of satellite-based Internet,” says Bhattacherjee.

The researchers presented the results at ACM CoNEXT 2019.

This article was reposted from Futurity.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.