2D and 3D combo could keep Moore’s Law going

 

Connecting state and local government leaders

Ultra-compact, yet high-performing electronic chips could overcome the challenges that face conventional integrated circuits and maintain Moore’s Law indefinitely, researchers say.

Ultra-compact, yet high-performing electronic chips could overcome the challenges that face conventional integrated circuits and maintain Moore’s Law indefinitely, researchers say.

To create the chips, researchers would take advantage of relatively new and promising two-dimensional (2D) materials and combining them with monolithic 3D (M3D) integration practices.

Moore’s Law says that the number of transistors on a microchip will double roughly every two years. And, thanks to advances in miniaturization and performance, this axiom has held true since 1965, when Intel cofounder Gordon Moore first made that statement based on emerging trends in chip manufacturing at Intel.

However, integrated circuits (IC) are hitting hard physical limits that are rendering Moore’s Law obsolete -- elements on a dense integrated circuit can get only so small and so tightly packed together before they begin to interfere with each other and otherwise lose their functionality.

“Apart from fundamental physical limits to the scaling of transistor feature sizes below a few nanometers, there are significant challenges in terms of reducing power dissipation, as well as justifying the incurred cost of IC fabrication,” says Kaustav Banerjee, a professor of electrical and computer engineering at the University of California, Santa Barbara. As a result, the very devices that we rely on for their steadily improving performance and versatility -- computers, smartphones, internet-enabled gadgets -- would also hit a limit, he says.

While Banerjee first disclosed the idea to combine 2D materials and 3D integration practices in an article back in 2014, more detailed research evaluating this technology from his Nanoelectronics Research Lab now appears in the IEEE Journal of the Electron Devices Society.

“Two-dimensional materials can be stable in their monolayer form with atomic scale thickness -- 0.5 nanometer or 5 Angstroms for graphene (a conductor) and hexagonal-boron-nitride (an insulator), and ~6.5 Angstroms for 2D transition metal dichalcogenides (semiconductors) such as molybdenum-disulphide (MoS2) or tungsten-disulphide/diselenide (WS2/WSe2),” Banerjee says.

“In addition, due to their layered nature, they offer pristine surfaces relatively free of defects and are excellent conductors of heat in the in-plane direction. All these properties, along with the possibility to directly synthesize these materials on top of prefabricated devices, offer unprecedented advantages over conventional 3D ICs that are already in the market or M3D integration with conventional electronic materials.”

Extending Moore’s Law

According to the Banerjee Group’s study, there’s a limit to how thin conventional semiconductor materials can get before their desirable electronic properties begin to fade.

“Thickness scaling of common semiconductor materials, such as Si, becomes challenging below a few nanometers due to rapid degradation of their mobility caused by the increase in electron scatterings from surface roughness,” Banerjee says. “In fact, below ~1 nm, conventional materials like Si or Ge may not be thermodynamically stable.”

On the other hand, atomically thin and stable 2D materials, such as graphene, hexagonal boron nitride (h-BN), and transitional metal dichalcogenides (MoS2, WS2, WSe2, etc) are highly space-efficient, thickness-wise. Moreover, due to their layered nature and pristine interfaces, the 2D semiconductors exhibit reasonably high mobilities and immunity against surface defects, according to the paper.

In addition, 2D materials tend to be a lot more flexible than their conventional counterparts, which make them ideal for state-of-the-art electronics applications, such as flexible displays. Stacked 2D materials, in contrast to their stacked 3D counterparts, meanwhile, can also minimize the inter-tier signal delays, thermal resistance, and reduce potential overheating.

By selecting certain 2D materials and stacking them, according to the researchers, not only does the monolithic 3D conserve precious space on the chip, but also allows for configuration based on the combined electronic properties of the materials.

“For example, owing to the atomically-thin vertical dimensions of 2D materials, and carefully-designed inter-tier electrostatics with graphene shielding layer that also benefits from enhanced heat dissipation, aggressive scaling of tier thickness down to sub-μm can be achieved,” Banerjee says. “Such scaling allows over 10-folds higher integration density with respect to conventional 3D integration, and over 150% greater integration density with respect to conventional M3D integration, with plenty of room for further improvements.

“Thus, 2D materials can help realize the ultimate density scaling of integrated electronics—both laterally and vertically—which can usher an unprecedented era of innovation and economic growth for the worldwide semiconductor industry,” he adds.

The ‘chip cities’ of the future

As with many innovations with potential to become mainstream technologies, there are challenges to consider to pave the way toward their mass manufacturing. For monolithic 3D devices, the challenges are to be able to fabricate these components at relatively low temperatures (lower than 500 degrees Celsius) to avoid degradations and damages to prefabricated devices located in the lower tiers, electromagnetic interference, and heat dissipation.

Last year, Banerjee’s group demonstrated a CMOS compatible graphene synthesis method that essentially addressed the low-temperature and transfer-free synthesis challenge for graphene. Similar efforts are underway in his laboratory to synthesize other 2D materials directly on wafers at low temperatures.

“Additionally, careful design is needed to electrically shield the generated electromagnetic waves from affecting the operations of devices on adjacent or nearby tiers,” says lead author Junkai Jiang, recent recipient of a doctoral degree in electrical and computer engineering from Banerjee’s laboratory. The researchers note that by using a thin graphene shielding layer between tiers (preferably doped to enhance electromagnetic screening effect), interference can be prevented even as the vertical layers are scaled down.

In terms of heat dissipation, the thinness of the material itself is conducive to allowing the heat from densely packed stacked components to dissipate efficiently. Coauthor Kamyar Parto, a member of Banerjee’s lab, remarked that “the 2D materials have much higher in-plane thermal conductivity compared to thinned-down conventional materials like silicon, which helps fast lateral heat transport, thereby reducing the risks of any hot-spot formation.”

“Ultimately, we envision heterogeneously integrated devices and technologies enabled by 2D materials to realize the world’s tallest and densest ‘chip-cities’ with unprecedented performance, storage capacity, and energy-efficiency,” he adds.

This article was reposted from Futurity.

NEXT STORY: DARPA takes the IoT to sea

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.