How AI can reduce traffic congestion and fuel consumption

 

Connecting state and local government leaders

Researchers at Oak Ridge National Laboratory used artificial intelligence to design a computer vision system that helps keep traffic moving efficiently through intersections and has the added benefit of minimizing fuel consumption.

When cars sit in traffic or at stoplights, they waste gas. Larger vehicles like tractor trailers use more fuel than cars when they idle and when they’re getting back up to speed after stopping at a red light. In fact, the Department of Energy estimates that more than 6 billion gallons of gasoline and diesel combined are lost to idling every year.

Researchers at Oak Ridge National Laboratory (ORNL) used artificial intelligence and machine learning to design a computer vision system that helps keep traffic moving efficiently through intersections and has the added benefit of minimizing fuel consumption.

The team used three smart stoplight cameras from Gridsmart, a traffic management services company, to collect real-world data from images of vehicles as they traveled through intersections on the lab’s campus. They applied AI and ML to teach the cameras how to identify vehicle types and their estimated gas mileage and then send that data to the next intersection’s traffic light.

The Gridsmart cameras have fisheye lenses, so a single camera can see horizon to horizon around an intersection, said Thomas Karnowski, a research and development staff member at ORNL’s Imaging, Signals and Machine Learning Group. The robust and easy-to-install sensors hang in an intersection and can tell if a lane is occupied by a vehicle.  They don’t, however, control the timing of the intersection lights.

Because the Gridsmart cameras only supply an overhead view – rather than a ground view -- of vehicles, the researchers tapped a ground-based roadside sensor ORNL was using for another project so they could collect data on vehicle makes and models. They the overhead images and ground-based data to get a dataset of vehicle classes. When combined with DOE fuel-economy estimates for different vehicle types, the ORNL Overhead Vehicle Dataset would allow them to determine when gas-guzzlers were in the intersection.

“The basic gist of it is: If you can use their imagery to detect the make and model, you have a pretty good estimate of what the vehicle’s fuel consumption is,” Karnowski said. “Then the second part is [using] that information to control the traffic lights to save energy without costing mobility,” he said. “We did some simulations based on the datasets we collected to see if we could answer that question.”

 Between the yearlong project’s start in February 2018 and September 2018, the dataset grew to about 12,600 vehicles spanning 474 classifications, but Karnowski said that wasn’t enough to train a deep learning network that would automatically detect and classify vehicle types. (The project received a six-month extension in February 2019.) Without the time to collect more data on their own, the researchers turned to a publicly available dataset collected by Stanford University researcher Timnit Gebru that identified 22 million cars from Google Street View images and classified them into 2,600-plus categories.

The team lowered the resolution on Gebru’s dataset to make it equivalent to what they got from Gridsmart and used the AlexNet convolutional neural network to start the project’s second phase. They tweaked Gebru data to estimate fuel consumption by substituting vehicle types with the DOE fuel consumption averages and got results similar to those they got from the Gridsmart data.

The researchers then built another neural network to compare the datasets using ORNL’s Multinode Evolutionary Neural Networks for Deep Learning (MENNDL) high-performance computing software stack.

“We got results that were essentially comparable to what we had with the more conventional neural network, but I believe if we had had more time and more data, we could have gotten better results because MENNDL has done a good job on a lot of other problems before,” Karnowski said. “That did allow us to get a sense of, informed by real-world data, how well these cameras could be trained to detect the vehicle make and model.”

To run a simulation of a citywide traffic grid, Karnowski and his team used an open source package called SUMO to model traffic systems. They then added the ability to train an ML algorithm to affect the lights with a detection system that was informed by their experimentation with the Gridsmart and open source data. They used an ML approach called reinforcement learning to teach the system to change the traffic lights to keep high fuel consumption vehicles moving.

“What’s interesting about it is you basically set up a system of rewards and penalties, and then you let the computer try different things until it learns to get the rewards and minimize the penalties,” like learning to win at a game, Karnowski said. “You simply say, ‘You make this move and you see what happens, you make that move and you see what happens.’ By the time it gets to the end, if it wins, it learns those moves were good,” he explained. “Over time, over thousands and millions of iterations of simulations, it learns how to play the game really well.”

In this case, the game was training the traffic light to keep traffic moving and save energy at the same time. Although the team didn’t do a complete round of simulations, Karnowski said, in at least one scenario, they estimated a 25% fuel savings in the case of large trucks moving in one direction.

“It learned how to preferentially treat the large trucks because they are heavy fuel consumers,” he said, without simply leaving a lane light green for longer. “It was actually actively changing the traffic signal based on the traffic that it saw, the makeup of the traffic and then other considerations, like you don’t want to have people waiting too long, so you have to keep that in mind as you control the light,” he said.

The project, which was funded by HPC4Mobility, the Energy Department’s Vehicle Technologies Office’s program for studying efficiency in mobility systems, has ended, but Karnowski said he hopes that with the proof of concept his team established, municipalities can move forward with more studies.

“I think, generally speaking, it would improve traffic flow and help with the economics of transportation,” he said.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.