Fixing ‘concept drift’: Retraining AI systems to deliver accurate insights at the edge

 

Connecting state and local government leaders

When results from artificial intelligence systems don’t align with what’s expected, data scientists must identify the root causes of concept drift and retrain the algorithms to ensure the systems can be trusted.

If you’re like many people, you view more streaming content now than ever. To keep you watching, content providers rely on machine-learning algorithms that recommend relevant new content.

But when the COVID-19 hit, viewing habits changed radically. Suddenly, different people were streaming different content at different times and in different ways. Were the ML algorithms now making less-relevant recommendations? And were they falsely confident in the accuracy of their less-precise predictions?

Such are the vagaries of “concept drift,” an issue few users of artificial intelligence are aware of. As government organizations leverage more AI in more far-flung locations, concept drift is a problem they’ll have to address. Particularly when deploying AI at the network’s edge, concept drift presents challenges.

Yet by being aware of the problem and its solutions, agencies can make sure their analysts, data scientists and systems integrators take steps to optimize the accuracy and confidence of their AI deployments.

Growth in government AI

While AI remains an emerging technology, both military and civilian government organizations increasingly deploy the capability -- particularly ML -- in a variety of situations:

  • Computer vision for operating autonomous vehicles.
  • Internet-of-things sensors for predictive maintenance of equipment.
  • IoT sensors and radio-frequency (RF) tags in supply networks to forecast the movement of supplies from manufacturers through ports and into warehouses.
  • Cybersecurity protections to identify potentially malicious activity.
  • Tools for optimizing delivery of government services, such as identifying which citizens will benefit most from a vaccine.

Many of these applications operate at the edge. The edge, however, presents unique challenges, because the models must be lean enough to run with limited processing power and network bandwidth. Those constraints become bigger factors when retraining algorithms to address concept drift.

Concept drift: High confidence in low accuracy

A simple way to think about AI algorithms is to say they accept data inputs and produce predictive outputs. Inputs could include images of cars, specifications such as machine tolerances or environmental factors such as temperature. Outputs could include identification of road hazards or forecasts of when equipment will require maintenance.

Concept drift occurs when the behaviors or features of the outputs being predicted change over time such that predictions become inaccurate for similar input data. Let’s say an ML algorithm designs shipping routes based on inputs such as the location of manufacturing sites, seasonal weather patterns, fuel costs and geopolitical realities. If the optimal shipping route changes over time, perhaps because sea currents change due to climate change, the model concept will have drifted. This will cause the algorithm to make recommendations based on an out-of-date mapping between the input data and the outputs being predicted.

Two key problems result from concept drift. First, the algorithm starts making predictions that are less accurate – often, much less accurate. So it might recommend a shipping route that’s slow, costly or even dangerous.

Second, and more deceptive, the algorithm continues to report a high level of confidence in its predictions, even though they’re markedly less accurate. Therefore, the model might accurately identify anomalous network behavior 70 times out of 100 but report that it’s 99% confident in the accuracy of its identifications.

Retraining at the edge

Technology vendors are developing AI training algorithms that can both determine when a model concept has drifted and identify the new inputs that will most efficiently retrain the model. In the meantime, when AI results that don’t align with what’s expected, data scientists or systems integrators should explore whether they need to investigate concept drift. If so, they should take these steps:

Identify root causes. Re-establish the “ground truth” of the algorithm by checking its results against what has been established as reality. Select a few samples, manually create accurate labels for them and compare the model’s confidence against its actual accuracy.

If confidence is high but accuracy is low, investigate how inputs have changed. Let’s say the inputs of an autonomous vehicle have been corrupted by dirt on its camera lens. That’s a problem of data drift, not concept drift. But if the vehicle was trained in a temperate environment and is now being used in a desertscape, concept drift might have occurred.

Retrain the algorithm. There are two basic approaches to retraining: continual learning and transfer learning. Continual learning makes small, regular updates to the model over time. In this case, samples are manually selected and labeled so they can be used to retrain the model to maintain accuracy.

Transfer learning reuses the existing model as the foundation for a new model. Let’s say the initial model’s basic features are solid but its classification capability is attuned to data inputs that no longer reflect reality. Transfer learning allows the classification capability to be retrained without rebuilding the model from scratch.

The ability to realign without starting over is crucial at the edge. Creation of an AI algorithm typically involves large data volumes that require the processing power of a centralized data center. Limited processing power and network bandwidth dictate that edge-based updates to AI algorithms be only incremental.

Building trust in AI outputs

Ultimately, agencies want their AI to deliver accurate insights and predictions. Just as important, they want those outputs to be trusted by the people who rely on them. That’s where addressing concept drift becomes crucial.

AI is still new to many people. Government employees and citizens alike might be hesitant to trust AI analyses and recommendations. The more often AI outputs are found to be inaccurate, the more user skepticism will grow. By actively addressing concept drift, agencies can ensure the accuracy and confidence of their AI models. In particular, they can avoid false positives and false negatives that erode trust.

Content-streaming services use AI for purposes that are helpful but hardly high stakes. Government agencies will increasingly deploy AI in mission-critical use cases that can have a significant impact on personnel and citizens. Managing concept drift can make sure algorithms deliver the insights and predictions they need -- and drive acceptance that maximizes investments in AI.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.