Brain stimulation can rewire and heal damaged neural connections, but it isn’t clear how

GettyImages/ Yuichiro Chino

 

Connecting state and local government leaders

The technique has the potential to treat a wide range of neurological diseases.

The connections between the neurons in your brain enable you to do amazing things, from brushing your teeth to solving calculus equations. When these connections become damaged, often as a result of conditions like stroke or traumatic brain injury, these abilities can be lost. Directly activating neurons with tiny pulses of electricity, however, can help rewire these connections and potentially restore function.

Doctors currently use this technique, called neurostimulation, to treat conditions like Parkinson’s and depression. We believe that neurostimulation has the potential to not only treat symptoms but also cure a wider range of diseases by repairing damaged connections. However, it has been unclear how to best fine-tune stimulation to specifically target damaged connections within the brain.

New forms of neurotechnology and statistical modeling that have developed over the past few years have made answering this question possible. Our team of biomedical engineers and statisticians used these tools to show that the changes neurostimulation makes to neurons depend on how they were connected in the first place. In other words, for neurostimulation to work, it needs to be tailored to each individual’s brain.

Deep-brain stimulation is one form of neurostimulation currently used to treat Parkinson’s and depression.

New technologies shine a light on stimulation

To investigate what factors most strongly influence the effects of neurostimulation, we stimulated the brains of two monkeys and recorded how the connections between different regions changed. We focused on brain regions involved in motor movement and sensory processing – areas that are often impaired in neurological disorders like stroke.

We recorded our data with a large-scale neural interface – a device that rests directly on the surface of a live brain and records the activity of the neurons below it. Our neural interface was able to precisely stimulate each area through optogenetics, a technique that shines a light on genetically modified neurons to activate them. While not yet approved for use in people, optogenetics has unique advantages over other forms of neurostimulation that make it especially useful for understanding how stimulation affects the brain. This includes its ability to make higher-quality recording of the electrical signals generated by the brain.

Optogenetics allows researchers to precisely control the behavior of specific neurons and other cells.

We then analyzed our data with an artificial intelligence algorithm designed to predict how preexisting brain connections and different stimulation parameters will affect the brain.

This algorithm is similar to other AI techniques like deep learning that find complex relationships in data that are otherwise difficult or impossible to identify. But unlike these “black box” models that make it impossible for researchers to understand how they arrived at their findings, our technique allows us to see why and how it makes its predictions. Using this algorithm, we were able to test different factors that influence connection changes and visualize how they each contributed to the overall prediction the model provided. These factors included pauses between stimulation sessions, the distance between stimulation locations in the brain and the region of the brain in which the electrodes were placed, among others.

We found that it was the existing connections in the brain, not how the stimulation was delivered, that was the most important factor to predicting changes in the brain. What this suggests is that the unique qualities of each individual’s brain are crucial to understand how it will respond to stimulation, pointing to a need for treatment personalization to maximize its benefits. This could look like tailoring the strength, frequency and location of the neurostimulation to each person’s brain.

Targeted stimulation could help rewire damaged connections in the brain.

Why personalization matters

Brain stimulation has the potential to treat a wide range of neurological diseases. Our work suggests that studying how existing brain connectivity affects neurostimulation response may be a new direction worth further investigation. We believe that changing neural connections themselves for long-term effects, as opposed to stimulating neurons for short-term changes in neural activity, may help move treatments from just treating symptoms to curing diseases outright.

One health condition for which personalization could lead to improved brain stimulation therapies is stroke, one of the leading causes of serious long-term disability and death in the U.S. While the brain is able to partially repair the damage caused by stroke, it has only a two-week window to do this before the chances of recovery significantly drop off.

Doctor placing transcranial magnetic stimulation device on patient's head.
Personalizing brain stimulation may lead to more effective treatments for a broader range of conditions. Suzanne Kreiter/The Boston Globe via Getty Images

A failed 2008 clinical study one of us was involved with, the Everest trial, explored the possibility of using brain stimulation to extend this recovery period and help stroke survivors regain their ability to move. Based on our recent study, we hypothesize that the clinical trial may have failed because researchers applied the same generic stimulation to all patients instead of tailoring it to each individual brain. Applying the same brain stimulation parameters may have worked in rodent studies, but human brains are much more complex. While we can’t know for sure if this is the reason the clinical trial failed, our research suggests that stimulation may have needed to be much more personalized to be effective.

Next steps to personalizing brain stimulation

Our work shows that tailoring treatment to each individual brain could help improve brain stimulation outcomes, and puts forward tools to study how neural connectivity influences stimulation. But further research is needed to figure out how personalization would best be done by precisely strengthening or weakening specific neural connections.

It is also worth noting that we have tested our technique on only two brain regions thus far. We plan on replicating this study in other brain regions to verify that our findings can be generalized across the brain as a whole and are applicable to different neurological and psychiatric disorders. We are also in the process of using our neural interface and AI algorithm to design stimulation patterns that can induce specific changes in the brain to repair dysfunctional connections.

The full potential of brain stimulation will not be realized until scientists have a better understanding of how it affects the brain. We believe that figuring out how existing patterns of brain connectivity interact and change with stimulation could open doors to more treatments and therapies for neurological and psychiatric diseases.

The Conversation

Azadeh Yazdan-Shahmorad, Assistant Professor of Bioengineering, and Electrical and Computer Engineering, University of Washington; Alec Greaves-Tunnell, Visiting Researcher in Computational Neuroscience, University of Washington, and Julien Bloch, PhD Candidate in Neural Engineering, University of Washington

This article is republished from The Conversation under a Creative Commons license. Read the original article.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.