Nuclear agency takes fast track to new supercomputing capacity

 

Connecting state and local government leaders

The National Nuclear Security Administration is pioneering a strategy for quickly acquiring as much as 3 petaflops of computing capacity to support the operational processing needed to keep its high-performance supercomputers busy.

The National Nuclear Security Administration is acquiring as much as 3 petaflops of high-performance computing capacity to be distributed at three Energy Department labs for handling the day-to-day calculations needed to support their world-class supercomputers.

NNSA will buy as many as 20,000 computing nodes during the next two years through the Tri-Laboratory Linux Capacity Cluster 2 program (TLCC2), assembled in scalable unit clusters. The agency is taking advantage of its purchasing power to make high-performance computing capacity a commodity and reduce the time required to build and field the clusters, and at the same time, it is improving interoperability.

“We’re trying to have a common hardware and software environment,” said Thuc Hoang, head of NNSA’s computing systems and software environment.


Related coverage:

Los Alamos unplugs supercomputers as wildfires threaten

Virginia, nonprofit plan supercomputer 'training ground'


A common environment would help NNSA meet what it calls a crushing load of computations needed to ensure the safety and reliability of the nation’s nuclear arsenal and provide redundancy when operations at one lab are interrupted, as when the Los Alamos National Laboratory was threatened recently by wildfires.

TLCC2 is a $39 million contract with options for as much as $89 million. Under it, Appro International will supply its Xtreme-X Supercomputer Linux clusters with Intel Xeon Sandy Bridge processors, along with an InfiniBand interconnect solution from QLogic that includes its 12000 series switches and 7300 series adapters running at quad data rate speeds of 40 gigabits/sec.

As many as 20,000 nodes will be installed at the Los Alamos, Sandia and Lawrence Livermore national laboratories. How many each lab will use has not yet been determined.

“The labs are still trying to figure out what the optimal number of scalable units is,” said Bob Meisner, NNSA’s director of advanced simulations and computing.

NNSA uses supercomputers to run the simulations that have replaced live testing of nuclear weapons, and its requirements have helped to push the limits of supercomputing performance. It divides its requirements into capability computing, which uses most of the capabilities of a world-class supercomputer to run a full simulation, and capacity computing, which is for running smaller simulations or other problems.

“Before you can run a big calculation, you need to run a lot of smaller calculations,” Meisner said. “Our day-to-day work demands a lot of the small” computations. “But our big problems demand the big computers.”

NNSA defines its capability computers as those ranked among the top 10 on the Top500.org list of supercomputers, all of which run at speeds of at least 1 petaflop (one thousand trillion floating point operations per second) or faster. Although the United States has been pushed out of the top spots on the latest list by computers in Japan and China, it still leads the world in overall petaflop computing with five systems.

But despite that performance, “the need for capacity is now so great that it is increasingly difficult to allocate the computer resources required by larger capability runs,” NNSA said in its statement of work for the TLCC2 contract. NNSA policy now is to reserve its most powerful supercomputer resources for full-scale simulations that require from one-half to three-quarters of a computer’s capability, and it uses them for no more than two simulations at a time. This means that additional capacity must be found for the smaller calculations.

To free full-scale supercomputer time, NNSA began investing in large-scale capacity computing for its three labs in fiscal 2007 with the initial Tri-Lab Linux Capacity Cluster contact. One goal of the program was to create a mass market for commercial high-performance computing platforms through volume purchases that would help lower the cost down.

By creating a common platform based on standard elements, “we recognized we could get good value by buying things at the lower end, and we could get some redundancy across the labs,” Meisner said.

The scalable cluster concept worked well enough in the first contract that as much as 3 petaflops of computing power is being acquired in the follow-on.

Each scalable unit will consist of 154 nodes, capable of an overall performance of about 50 teraflops (or 50 trillion floating point operations per second), with every 18 nodes connected to a 36-port edge switch, which in turn is connected to core switches. The units are interconnected through the core to create a fabric operating at as fast as 40 gigabits/sec. The concept allows the vendors to build, test and deliver the scalable units that can be quickly put into operation.

“It limits the amount of integration time,” said Joseph Yaworski, QLogic’s director of high-performance computing product and solution marketing.

The ability of the interconnect fabric to scale while maintaining high performance will determine how many units can be effectively deployed in a single system. Larger systems can be more efficient for handling multiple complex capacity computing problems, “but the larger you build, the interconnect starts stretching,” Meisner said.

The InfiniBand architecture used in the QLogic TrueScale interconnect under the original TLCC contract scaled efficiently in the deployment of more than 4,000 nodes at the Lawrence Livermore lab, with latency of 1 to 2 microseconds.

The computing environment on capability supercomputers typically is specialized and proprietary, Hoang said. Capacity computers have a different set of user tools and software, in this case based on Linux. “That’s why you have different investments for the capability and capacity systems,” she said.

Using the scalable unit model, it takes only a few weeks to get a capacity system up and running, compared with the months needed to bring a capability computer up to speed. This speed, along with a common operating environment being established through the tri-labs program, will make it easier to shift work among the labs and allow them to back each other up in the event of disruptions.

NEXT STORY: Is it time for reduced sign-ons?

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.