HPC helps scientists extract data from satellite and drone imagery

 

Connecting state and local government leaders

Oak Ridge National Laboratory researchers are using GPU-powered machine learning and high-performance computing platforms to optimize data extraction from satellite and drone imagery.

Oak Ridge National Laboratory (ORNL) researchers are using machine learning and high-performance computing (HPC) platforms to optimize data extraction from satellite and drone imagery.

“The massive amount of data of course comes [with] unprecedented challenges in machine learning developments and how to leverage existing computational resources to help us to do more effective and efficient remote sensing data analytics work,” Lexie Yang, research scientist at ORNL, said during a Nov. 11 presentation at NVIDIA’s GTC21 GPU Technology Conference 2021.

She and Philipe Dias, research associate at ORNL, extracted building footprints and roads from satellite imagery datasets, using building segmentation, which involves labeling pixels of buildings from complex remote sensing images.

One challenge with this task is the volume of data that needs to be handled. To map Earth’s surface, the researchers use a low resolution of 5 meters per pixel, which means 100 trillion pixels need to be processed, Dias said. More granularity -- say, 0.5-meter resolution -- results in 90 terabytes of data just for a country the size of Nigeria. Converted to pixels, that’s 32 trillion. But out of those, less than half a percent – 62 billion – are of buildings.

“It becomes kind of a needle in a haystack problem,” Dias said.

A second challenge is generalization, he said. Currently, sensors from satellites and drones collect imagery at various resolutions. Other considerations include the “look angle,” or how the device captures the image and domain distribution shifts in which images collected from the same location with the same look angle at different points in time might appear different.

“You need to somehow address the domain shift because otherwise the performance of your model is going to be really poor,” he said.

He cited three potential strategies. The first is to label more data for the target domain, but that is the costliest, most non-scalable approach, he said: “Every new domain you have, you need to annotate more data.”

The second is to transfer learning. This means adding to the initial segmentation pipeline a discriminator component and corresponding loss components to force adversarial learning that results in a feature representation that maps data from a search domain and data from a target domain in such a similar manner that the discriminator will not be able to tell them apart. The idea is then if you layer on building segmentation, you can get a segmentation good enough for search and target domains, Dias said.

The third option is to create specialist models by partitioning manifold spaces. This means feeding through an ML model the extracted corresponding features of a data collection and then mapping those features to make a visualization. “By doing so, you are able to start to see some structure, some patterns in this data,” Dias said.

This option is the idea behind ReSFlow, “a workflow that breaks the problem of model generalization into a collection of specialized exploitations. ReSFlow partitions imagery collections into homogeneous buckets equipped with exploitation models trained to perform well under each bucket’s specific context. Essentially, ReSFlow aims for generalization through stratification,” according to a paper on it by other ORNL researchers.

A benefit of this method is parallel training and inference. As the specialist models train simultaneously, they allow for inference, or extracting features of images in the dataset and automatically assigning them to the buckets. The result of this strategy has been a 10% increase in segmentation quality, Dias said.

“Whenever we develop a model-trending strategies even with the most advanced visual extractors to complete this end-to-end workflow, the last step is to see how we can deploy this trained model at scale,” Yang said.

This is important because of amount of data, she said, adding that with an efficient model deployment workflow in place, researchers can make out all the buildings within hours or days.

The work went from a single workstation to a model stage and now to mini HPC clusters or full-scale HPC resources to address how to scale the workflow computationally.

“We tried to balance the resources and maximize the utilization across all the computing nodes,” Yang said, while also monitoring GPU and CPU usage and using an NVIDIA profiling tool to identify sources of latency. “We are successfully chopping all the workflow so we can leverage both CPU and GPU simultaneously.”

Processing time fell from three weeks to three days.

Another way to address scalability and generalization is to use HPC. To illustrate this, Yang pointed to a project that used no human annotations for roads, instead relying on labels from OpenStreetMap. To address data quality issues and the misalignment between OpenStreetMap and satellite images, ORNL used Auto-Shifting ML. That let researchers process the data from OpenStreetMap and calculate features using vector data to generate higher-quality data for road mapping.

Without HPC to process almost 140,000 training symbols, it would take about 115 days, but with ML and HPC, it took two hours, Yang said.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.