Mapping the Microorganisms Behind Hospital-Borne Infections

Shutterstock

 

Connecting state and local government leaders

A new project could help protect patients by showing how microbes move throughout hospitals.

In January 2013, as the University of Chicago prepared to unveil its newest hospital building, one last task remained: swabbing the nooks and crannies of the building, from floor to furniture to water faucets.

The people doing the swabbing were researchers collecting samples of microorganisms—the bacteria, fungi, and viruses that are essentially everywhere, including within hospital walls. As part of an initiative called the Hospital Microbiome Project, these researchers returned to the hospital throughout the year to collect nearly 12,400 samples, with the goal of mapping out the mix of microbes that populate a health-care environment.

Just as the human gut has a microbiome, so too does a hospital, the team posited. They’re among a growing group of researchers who believe that understanding hospitals’ microscopic ecological community could be key to preventing people from getting sicker in hospitals when they should be recovering. Our gut microbiome has been linked to effects ranging from Parkinson’s disease to the body’s immune response; some scientists believe a hospital’s microbiome could play a role in health, too.

It’s no secret that health-care-related infections have major health and economic costs. Every year, an estimated 440,000 infections occur in U.S. hospitals, costing nearly $10 billion. And despite efforts at keeping the building and workers’ hands and tools clean, these illnesses persist. “There are many unexplained diseases that occur in hospitals—sepsis, infections—and although we can identify a bacterium most associated with those events, we still fail to understand the specifics of the transfer of organisms in the hospital,” says Jack Gilbert, a leader of the Hospital Microbiome Project and a microbial ecologist at Argonne National Laboratory.

To answer those questions, the team collected samples from two nursing stations and a few sites in 10 hospital rooms in the new hospital building. They swabbed these areas before the building began admitting patients, then throughout the first year after the rooms were occupied. The researchers sampled the microbes in the air of the hospital and on staff members’ bodies; they also collected environmental information such as humidity and the concentration of carbon dioxide to keep tabs on the number of human occupants during all hours of the day and night. As a separate component of the project, researchers measured similar variables in a single patient room in a U.S. Army hospital in Germany.

It wasn’t the first examination of the microorganisms living in buildings. In 1887, Thomas Carnelley investigated the airborne germs in schools, sewers, and homes in Dundee, Scotland. And recently, another team of researchers examined the microbes in a hospital’s neonatal intensive care unit. Still, the Chicago project is larger-scale, enabled in part by recent advancements in gene-sequencing technology that facilitate processing myriad samples. And the project is the first not only to identify which types of microorganisms—friendly or pathogenic—dwell in a hospital, but to gauge how location and environmental factors, such as humidity, ventilation, and human foot traffic, may shape these populations over time.

“If you can understand the patterns of microbial community composition and how these change over time, you can get a pretty good idea of how to prevent some of the transmission of pathogenic organisms,” said John Chase, who has researched the microbiome at Northern Arizona University and is not involved in the Hospital Microbiome Project.

For example, only a minority of the bacteria in any microbiome—whether in the gut or in a building—poses an infection risk; the rest are bystanders (sometimes called colonizers), or even beneficial. Yet many treatments patients undergo, such as chemotherapy or antibiotics, tweak that microbial mix, potentially turning the generally harmless bacteria or fungi into disease-causing agents.

“We traditionally think the only organisms in a hospital are those that cause disease, and that when we detect them that patients are at risk of an infection,” Gilbert says. “Yet there is a surprising paucity of data supporting that.”

Instead, the infections acquired in the hospital likely stem from more just the presence of “bad” bacteria, he says. After all, plenty of people who work in the medical field unknowingly carry potentially pathogenic bacteria in their digestive systems and on their skin. Yet unlike weakened or otherwise compromised patients, they don’t fall ill because they are protected from a full-blown infection by their immune system and the other microbes that live there.

The project’s results haven’t yet been published, but Brent Stephens, a Hospital Microbiome Collaborator, revealed that certain types of bacteria commonly found on human skin, such as some species of staphylococcusstreptococcusandcorynebacterium, became much more abundant after the hospital opened. Meanwhile, Pseudomonas, which can cause bladder, wound, and lung infections, and which is less often a skin colonizer, became less plentiful. That indicates the hospital environment and the humans within it mingle in a way that fosters the exchange of bacteria.

This jibes with prior research, which has shown that humans deposit and acquire microbial mementos from buildings via the skin. “Surprisingly quickly, when you enter a room, you start picking up microbes, and the room picks up microbes from you,” says Daniel Freedberg, a gastroenterologist and assistant professor of medicine at Columbia University Medical Center in New York City.

Freedberg believes a map of a hospital’s microbiome—something that delineates the surfaces where certain bugs thrive—could provide valuable insights into the environmental conditions that allow microbes to flourish. He led a recent study that indicates the hospital environment could indeed play a role in infection transmissionThe research linked inheriting a hospital bed from a patient who had received antibiotics to a higher risk of infectious, potentially deadly diarrhea caused by clostridium difficile, a bacterium whose spores thrive in human guts when normal bacteria have been decimated by antibiotics.

The study didn’t identify the reason for the association between antibiotics and infection—but it points to the possibility that the medicines one patient received altered his or her gut microbiome, and that this modified mixture of bugs was then passed on to the next patient in the bed, predisposing this second patient to c. difficile. Alternatively, one patient could have directly passed the bacterium to the next by way of the mattress or bedrail. Although hospital staff cleaned the bed between patients, c. difficile spores are notoriously tough to kill. (Gilbert, for his part, is not convinced cleanliness alone will ever eliminate infections in hospitals.) Both explanations speak to the effects that altering the gut microbiome of one patient can have on another, and how the hospital may serve as a vector for disease.

“The ultimate goal is to be able to understand whether there are communities of microbes that can affect human health,” said Chase, “and what kinds of conditions go into creating those communities.”

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.